Could the Himalaya be Self-Sufficient in Conventional and Unconventional Hydrocarbon Resources

"Sustainable Resource Development in the Himalaya" Leh, 24-26 June, 2014

Naveen Hakhoo

Distribution of proved oil and gas reserves in 2012 (Percentage)

Oil production/consumption by region Million barrels daily

Production by region

Consumption by region

Gas production/consumption by region Billion cubic metres

Production by region

Consumption by region

Primary Energy Consumption

Energy Outlook 2035

Hydrocarbon Source and Reservoir Rocks through Geological Time

Kendall et al., AAPG Search and Discovery Article #40472 (2009) Originally from Ulmashek and Klemm, 1990

Distribution of Source and Reservoir Rocks

General geology and tectonics of the Himalayan arc and the Foreland Basin (after Gupta and Gahalaut, 2012; Raiverman, 2013)

Craig et al., In Prep

Proterozoic Petroleum Systems

Craig et al., In Prep

Kohistan

island arc

KARAKORAM

SSZ

Nanga

Parbat

Tso-Morar

& Nyimalir

Mesozoic Petroleum Systems

tan Plateau

-Triassic-Jurassic; Lamayuru Fm, av. TOC 1.24 wt % -Cretaceous; Nindum Fm, av. TOC 0.94 wt % -Cretaceous – Eocene; Indus Fm (Very Prospective, Gas Prone, Type III Kerogen), av. TOC 1.91 wt % "Sufficient Thermal Maturation – Gas & Some Oil"

> Xigase Ophiolite

 $+30^{\circ}N$

90°E

Potwar Basin & Kohat Plateau -Triassic Shallow Marine Sediments -Jurassic Strata: Type II & III Kerogen, TOC ,1-7.5 wt %; Tmax, 424-436°C -Cretaceous Basinal Shales and Sandstones - Production from Early Jurassic (Datta Fm) Kashmir Basin Triassic Formations Khrew Sandstones, Zewan Shales and Limestones "Potential Source and Reservoir Rocks" Butt, 1968. Jurassic Limestones, Sandstones and Shales Craig et al., In Prep

Cenozoic Petroleum Systems

Oil and Gas Seeps; Main Drivers for the Early Exploration

Craig et al., In Prep

Households in Sadr-E-Kot (Sopore, Kashmir, India) use gas encountered in the Karewa Formation for Cooking

Craig et al., In Prep

Gas Seep Geochemistry (Bulk chemical & isotopic composition)

Details of Exploration in NW Himalaya (Craig et al., in prep.)

Operator/ Company	Oil and Natural Gas Corporation Limited (ONGC)						
Wells Drilled	34						
1950-1960	2						
1960-1970	10						
1970-1980	5						
1980-1990	10						
1990-2000	4						
2000-2010	3						
Oil and Gas Shows	9 wells only						
Maximum depth penetrated	6727m, Jawalamukhi						
Subathu Group not penetrated in any of the wells							

Wells drilled in the NW Himalaya, India

(Craig*et al.,* in prep.)

Research has focused on Neoproterozoic and Cenozoic (Eocene), Conventional (True and Hybrid) and Unconventional Petroleum Systems in the Himalayan Foreland Basin- Frontal Fold Thrust Belt.

Petroleum System Events Chart											
Timing of Elements and Processes In the Himalayan Foreland Basin and FTB											
1000- 542.0	80 	70 I	60 I	50 I	40	30 I	20 ₁₅ 1	0 _{5 2.5}	Geologic Time		
Neoproterozoic			Palaeogene				Neogeneto	Recent			
			Palaeocene	ene Eocene C		Oligocene	Miocen	e	System Events		
Sirban Fm.			Subath	u Gp.			Murree/ Siv	valik Gp.	Rock Units		
			Subath	u Gp.					Source Rock	S	
Sirban Fm.							Murree/ Siv	walik Gp.	Reservoir Rock	ent	
									Seal Rock	B B B B B B B B B B	
Sirban Fm.			Subathu Gp.				Murree/ Siwalik Gp.		Overburden Rock	e	
			1.7						Maturity/Ro		
			c.4-5 %						TOC		
									Trap Formation	N	
									Gen/Migration/Accum.	sse	
	_								Preservation	ce –	
									Gas Window	20	
									Critical Moment		
Critical Moment After: Magoon and Dow 1994 and AAPG											
Time of Expulsion and Migration (Trap must already exist)											
Data From: N.K. Verma et al., 2012; DeCelles et al., 1998b; Hodges et al., 1998; Meigs et al., 1995											

Hydrocarbon Source and Reservoir Rocks through Geological Time

Summary and Conclusions

- Presence of the essential petroleum system elements at multiple stratigraphic levels through Neoproterozoic to Neogene
- Subathu Gp., Type III Kerogen, productive dry gas window, excellent source quality (Thickness: 80-100m, TOC: 4-5%, Ro: c. 1.41)
- Thrust tectonics cardinal to the maturity of shales, expulsion & retention of hydrocarbons
- Thick shales in inner belt with structures (triangle zones, pop-ups and duplex) > 3 Ma; prospective drilling targets
- Himalaya merits further hydrocarbon exploration albeit against some, environmental, technical, Socio-economic & political challenges

Haku's

Thank you!